Galois extension

Results: 70



#Item
41Equations / Z3 / Vehicle Identification Number / Quadratic equation / Galois theory / Field extension / Polynomial / Quadratic / Algebra / Mathematics / Elementary algebra

Construction of Regular Polygons Jacques Willekens May 24, 2008 Abstract

Add to Reading List

Source URL: home.scarlet.be

Language: English - Date: 2009-12-29 05:08:22
42Galois theory / Group theory / Algebraic number theory / Fundamental theorem of Galois theory / Galois group / Galois extension / Separable extension / Galois connection / Field / Abstract algebra / Algebra / Field theory

Chapter 6 Galois Theory 6.1 Fixed Fields and Galois Groups

Add to Reading List

Source URL: www.math.uiuc.edu

Language: English - Date: 2006-08-28 17:41:55
43Splitting field / Separable extension / Field extension / Field / Galois group / Galois theory / Algebraic structure / Polynomial / Algebraic closure / Abstract algebra / Algebra / Field theory

Galois closures for monogenic degree-4 extensions of rings Riccardo Ferrario [removed]

Add to Reading List

Source URL: www.algant.eu

Language: English - Date: 2014-07-04 04:50:27
44Galois theory / Field theory / Galois module / Ramification / Algebraic number field / Field extension / Field / Different ideal / Splitting of prime ideals in Galois extensions / Abstract algebra / Algebra / Algebraic number theory

Universiteit Leiden Mathematisch Instituut Master thesis On local Galois module structure for cyclic extensions of prime degree

Add to Reading List

Source URL: www.algant.eu

Language: English - Date: 2012-07-12 18:50:36
45Field theory / Niels Henrik Abel / Galois theory / Algebraic groups / Galois module / Algebraic number field / Abelian group / Field extension / Abelian variety / Abstract algebra / Algebra / Algebraic number theory

P1: IML/SPH PB440-23 P2: IML/SPH QC: IML/SPH

Add to Reading List

Source URL: www.math.tifr.res.in

Language: English - Date: 2009-06-14 05:03:04
46Homological algebra / Motive / Chow ring / Severi–Brauer variety / Finite field / Algebraic variety / Sheaf / Constructible universe / Separable extension / Abstract algebra / Algebra / Algebraic geometry

INCOMPRESSIBILITY OF PRODUCTS OF WEIL TRANSFERS OF GENERALIZED SEVERI-BRAUER VARIETIES NIKITA A. KARPENKO Abstract. We generalize the result of [11] on incompressibility of Galois Weil transfer of generalized Severi-Brau

Add to Reading List

Source URL: www.math.uni-bielefeld.de

Language: English - Date: 2014-06-27 04:07:16
47Constructible number / Compass and straightedge constructions / Field extension / Simple extension / Field / Galois theory / Fundamental theorem of algebra / Minimal polynomial / Normal extension / Abstract algebra / Algebra / Field theory

Course 311: Abstract Algebra Academic year[removed]D. R. Wilkins c David R. Wilkins 1997–2007 Copyright

Add to Reading List

Source URL: www.maths.tcd.ie

Language: English - Date: 2008-01-31 10:23:17
48Galois group / Finite field / Normal extension / Galois theory / Field extension / Discriminant / Fundamental theorem of algebra / Splitting field / Separable polynomial / Abstract algebra / Algebra / Field theory

Course 311, Part IV: Galois Theory Problems Hilary Term[removed]Use Eisenstein’s criterion to verify that the following polynomials are irreducible over Q:— (i ) t2 − 2;

Add to Reading List

Source URL: www.maths.tcd.ie

Language: English - Date: 2006-03-16 12:03:53
49Galois group / Normal extension / Finite field / Galois theory / Field extension / Discriminant / Splitting field / Fundamental theorem of algebra / Polynomial / Abstract algebra / Algebra / Field theory

Course 311: Galois Theory Problems Academic Year 2007–8 1. Use Eisenstein’s criterion to verify that the following polynomials are irreducible over Q:— (i ) x2 − 2;

Add to Reading List

Source URL: www.maths.tcd.ie

Language: English - Date: 2008-01-31 11:03:39
50Polynomials / Field extension / Root of unity / Minimal polynomial / Factorization of polynomials over a finite field and irreducibility tests / Partial fraction / Abstract algebra / Algebra / Mathematics

An Introduction to Galois Theory Solutions to the exercises[removed]Chapter[removed]Clearly {n ∈ Z : n > 0 and nr = 0 for all r ∈ R} ⊆ {n ∈ Z : n > 0 and n1 = 0}. If 0 < n ∈ Z and

Add to Reading List

Source URL: www.maths.gla.ac.uk

Language: English - Date: 2012-12-16 10:36:21
UPDATE